1. Mills K.C. et al. The performance and properties of mould fluxes // Ironmak. Steelmak. 2005. Vol.32. No. 1. P. 26–34.
2. Dey A. Development of viscosity calculation method for mould powders // Ironmak. & Steelmak. 2014. Vol. 41. No. 2. P. 81–86.
3. Hanao M. et al. Evaluation of viscosity of mold flux by using neural network computation // ISIJ Int. 2006. Vol. 46. No. 3. P. 346–351.
4. Mills K., Sridhar S. Viscosities of ironmaking and steelmaking slags // Ironmak. & Steelmak. 1999. Vol. 26. No. 4. P. 262–268.
5. Zhang G.-H., Chou K.-C., Mills K. A Structurally based viscosity model for oxide melts // Metall. Mater. Trans. B. 2014. Vol. 45. Iss. 2. P. 698–706.
6. Iida T et al. Equation for estimating viscosities of industrial mold fluxes // High Temp. Mater. Processes. 2000. Vol.19. No. 3–4. P.155–164.
7. Miyabayashi Y. et. al. Model for estimating the viscosity of molten aluminosilicate containing calcium fluoride // ISIJ Int. 2009. Vol. 49. No. 3. P. 343–348.
8. Shu Q., Chou K.-C. Viscosity estimations of multi-component slags // Steel Research. 2011. Vol. 82. No. 7. P. 779–785.
9. Riboud P.V. et al. Improvement of continuous casting powders // Fachberichte Huttenpraxis Metallweiterverarbeitung. 1981. No. 19. P. 859–869
10. Shu Q. Viscosity estimation for slags containing calcium fluoride // Jour. of Univ. of Science and Technology Beijing. 2005. Vol.12. No.3. P. 221–224.
11. McCauley W.L., Apelian D. Viscosity of fluxes for the continuous casting of steel // Mineral Matter and Ash in Coal.1986. Vol. 301. Chapter 16. P. 215–222.
12. Kondratiev A., Jak E., Hayes P.C. Predicting slag viscosities in metallurgical systems // Jom.2002.Vol. 54. No. 11. P. 41–45.
13. Watanabe K. et al. Effect of Properties of Mold Powder Entrapped into Molten Steel in a Continuous Casting Process // ISIJ International, 2009. Vol. 49. № 8. P. 1161–1166.
14. Dey A., Riaz S. Viscosity measurement of mould fluxes using inclined plane test and development of a mathematical model // Ironmak. & Steelmak. 2012. Vol. 39. No.6. P. 391–397.